Development and evaluation of collision warning/collision avoidance algorithms using an errable driver model
نویسندگان
چکیده
Collision warning/collision avoidance (CW/CA) systems must be designed to work seamlessly with a human driver, providing warning or control actions when the driver’s response (or lack of) is deemed inappropriate. The effectiveness of CW/CA systems working with a human driver needs to be evaluated thoroughly because of legal/liability and other (e.g. traffic flow) concerns. CW/CA systems tuned only under open-loop manoeuvres were frequently found to work unsatisfactorily with human-in-theloop. However, tuning CW/CA systems with human drivers co-existing is slow and non-repeatable. Driver models, if constructed and used properly, can capture human/control interactions and accelerate the CW/CA development process. Design and evaluation methods for CW/CA algorithms can be categorised into three approaches, scenario-based, performance-based and human-centred. The strength and weakness of these approaches were discussed in this paper and a humanised errable driver model was introduced to improve the developing process. The errable driver model used in this paper is a model that emulates human driver’s functions and can generate both nominal (error-free) and devious (with error) behaviours. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. Three error-inducing behaviours were introduced: human perceptual limitation, time delay and distraction. By including these error-inducing behaviours, rear-end collisions with a lead vehicle were found to occur at a probability similar to traffic accident statistics in the USA. This driver model is then used to evaluate the performance of several existing CW/CA algorithms. Finally, a new CW/CA algorithm was developed based on this errable driver model.
منابع مشابه
Human Performance Models and Rear-End Collision Avoidance Algorithms
Collision warning systems offer a promising approach to mitigate rear-end collisions, but substantial uncertainty exists regarding the joint performance of the driver and the collision warning algorithms. A simple deterministic model of driver performance was used to examine kinematics-based and perceptual-based rear-end collision avoidance algorithms over a range of collision situations, algor...
متن کاملEvaluation of automotive forward collision warning and collision avoidance algorithms
Collision warning/collision avoidance (CW/CA) systems target a major crash type and their development is a major thrust of the Intelligent Vehicle Initiative. They are a natural extension of adaptive cruise control systems already available on many car models. Many CW/CA algorithms have recently been proposed but the existing literature mainly focuses on algorithm development. Evaluations of th...
متن کاملCollision Warning Timing, Driver Distraction, and Driver Response to Imminent Rear-End Collisions in a High-Fidelity Driving Simulator
Rear-end collisions account for almost 30% of automotive crashes. Rear-end collision avoidance systems (RECASs) may offer a promising approach to help drivers avoid these crashes. Two experiments performed using a high-fidelity motion-based driving simulator examined driver responses to evaluate the efficacy of a RECAS. The first experiment showed that early warnings helped distracted drivers r...
متن کاملDevelopment of a Collision Avoidance Algorithm Using Elastic Band Theory
This paper presents a new Collision Avoidance (CA) Algorithm which uses Elastic Band Theory. Researchers tried to develop warning systems to avoid collisions which warn drivers of possible collision risk with audio and or visual signs. However, these systems are not sufficient for avoidance of a collision in situations where the driver gives no response to the warnings. CA System is a kind of A...
متن کاملDevelopment of a Vehicle Dynamics Controller for Obstacle Avoidance
As roads become busier and automotive technology improves, there is considerable potential for driver assistance systems to improve the safety of road users. Longitudinal collision warning and collision avoidance systems are starting to appear on production cars to assist drivers when required to stop in an emergency. Many luxury cars are also equipped with stability augmentation systems that p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010